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Abstract: - In this article, an observer with delay-dependent stability conditions has been presented for time 
delay systems with unknown inputs, where the time delay terms exist in the state and output of the system. The 
designing of this observer, whose performance index is the H2 norm, has been formulated as a nonlinear 
optimization problem. By using the finite characterization of a Lyapunov functional equation, sufficient 
conditions have been proposed to guarantee the existence of a desirable H2 filter. This finite characterization 
can be calculated by means of a matrix exponential function. Several numerical examples have also been 
simulated to show the effectiveness and simplicity of the proposed observer. 
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1 Introduction 
A dynamic system whose state variables are 
estimations of the state variables of another system 
is called the observer of that system. This 
expression was first introduced in 1963 into the 
theory of linear systems by Luenberger [1]. He 
showed that for every observable linear system, an 
observer can be designed whose estimation error 
(i.e. the difference between the real state of the 
system and the observer state) becomes zero at 
every considered speed. In fact, an observer is a 
dynamic system whose inputs are the process inputs 
and outputs, and whose outputs are the estimated 
state variables. It can be stated that an estimator of 
state is an indispensible member of the control 
systems theory, and it has important applications in 
feedback control, system supervision and in the fault 
diagnosis of dynamic systems. 

In the control process, it is often assumed that the 
internal state vectors exist and are available in the 
measurement of the output; while in practice, this is 
not the case, and it is necessary to devise an 
observer in order to provide an estimation of state 
vectors. If the estimation and reconstruction of all 
the state variables is needed, the full-order 
observers, and if the estimation and reconstruction 

of a number of state variables is needed, the 
reduced-order observers are used. During the last 
decade, the theory of observer design for time delay 
systems has been widely contemplated [2-8]. The 
estimation of state variables is an important 
dynamic model, which adds to our knowledge of 
different systems and helps us analyze and design 
various controllers. Different approaches have been 
used for the designing of observers, including: the 
coordinate change approach [9], the LMI method 
[10], reducing transformation technique [11], 
factorization approach [12], polynomial approach 
[13], modal observer [14], reduced-order observer 
[15] and the output injection based observer [16]. In 
[17], through an algebraic approach, an observer 
with delay-independent stability for systems with 
one output delay has been presented. In [18], an 
observer has been proposed that uses the H ∞  norm 
as the performance index. The H ∞  filter has been 
considered in [19], [20] by applying the delay 
independent stability conditions, in which the matrix 
inequality has been used. We also frequently 
encounter the issue of state delay in control 
problems and physical systems. In recent years, the 
systems with delay in state have attracted the 
attention of many researchers, and numerous 
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approaches have been proposed for the evaluation of 
stability in these systems (see [21] and [22, 28] and 
the references cited in them). Time-delayed systems 
play significant roles in theoretical as well as 
practical fields; and this influence can be observed 
in numerous research articles written on various 
problems that involve this class of systems [32-40]. 

The goal of this article is to design an observer 
for time delay systems in which the time delay 
terms exist in the output and in the state variables, 
and also the inputs are mixed with noise and the 
system output accompanies measurement noises. In 
the designing of this observer we have used the H2 
norm as the performance index. However, despite 
the usefulness of the 2H  norm, few observers have 
used it as the performance index. In [23] and [24] a 
method has been proposed for the calculation of the 

2H  norm of time delay systems by means of the 
delay Lyapunov equation. In [25], an observer has 
been offered for time delay systems by applying the 
delay-independent stability conditions. It should be 
mentioned that delay-independent approaches are 
generally more conservative than delay-dependent 
ones. In this article, for the estimation of system 
states, an 2H  observer has been proposed whose 
design uses the delay-dependent stability conditions. 
Note that when there are no time delay terms, the 
optimal 2H  norm observer is a standard Kalman 
filter. Therefore, the proposed filter can be 
presented as a Kalman filter for the time delay 
systems. The optimal 2H  norm observer will be 
designed by employing the finite characterization of 
a Lyapunov functional equation as a matrix 
exponential function and applying the unconstrained 
nonlinear optimization algorithm. Finally, the 
proposed observer in this article will be used to 
estimate the current states based on the time delay 
system, where the time delay terms exist in the state 
and in the output of the system. 

This article has been organized in the following 
manner. In section 2, for the definition of the 
observer, the necessary mathematics has been 
presented. In section 3, the calculation of the 

2H norm and the Lyapunov functional equation has 
been offered for the state delay system. In section 4, 
the method of filter design has been described. In 
section 5, in order to test the practical usefulness of 
the proposed technique, it has been applied for 
solving the estimation problem of several linear 
systems with time delay. And finally, the summary 
and conclusion of the obtained results have been 
presented in the last section.          
 

2 Introduction of the proposed 
observer 
Consider linear time-invariant systems described by.  
 

0 1 1 2

0 1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t A x t A x t h B t B u t
y t C x t C x t h C t

ω
ν

= + − + +
= + − +

          (1) 

 
Where nx R∈  is the state, pRω∈  is the process 

noise, qu R∈  is the input, ry R∈  is the 
measurement, and rRν ∈  is the measurement noise. 
The h  is constant known time delay in the states 
and the outputs. 

It is assumed that ν  and ω  are uncorrelated 
white Gaussian processes, which satisfy 

 
{ ( )} 0, { ( ) ( ) } ( )
{ ( )} 0, { ( ) ( ) } ( )

E t E t s I t s
E t E t s I t s

ω ω ω δ
ν ν ν δ

′= = −
′= = −

                   (2) 

 
The objective of this paper is to derive an 2H  filter 
for a time delay system (1), where a filter has the 
following form: 
 

( )
0 1

0 1 2

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( )

x t A x t A x t h
K C x t C x t h y t B u t
= + −

− + − − +       (3) 

 
Defining the estimation error ( )e t  as 
 

ˆ( ) ( ) ( )e t x t x t−  
 
we obtain 
 

0 1: ( ) ( ) ( ) ( )eG e t A e t A e t h B tξ= − − +                     (4) 
 
Where 
 

[ ]

0 0 0 1 1 1

1 2

,
( )

, , ( )
( )

A A KC A A KC
t

B B KC t
t

ω
ξ

ν

− −

⎡ ⎤
− ⎢ ⎥

⎣ ⎦

     

    
    The 2H  norm of the error system is used as the 
performance index estimate 
 

2

2
0 1

1( , ) lim ( ) ( )
T

e T
G J k h E e t e t dt

T→∞

⎧ ⎫⎪ ⎪′= = ⎨ ⎬
⎪ ⎪⎩ ⎭
∫               (5) 

    
If there are no time delay terms (i.e., 1 0A =  and 

1 0C =  ), then (1) becomes 
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0 1 2

0 2

( ) ( ) ( ) ( )
( ) ( ) ( )

x t A x t B t B u t
y t C x t C t

ω
ν

= + +
= +

 

 
and the filter, minimizing the 2H  norm (5) for this 
non-delayed system, is the standard Kalman filter. 
Thus we can call the proposed filter minimizing (5) 
a Kalman filter for time delay systems. 
 
 
3 H2 Norm Computatuon 
The 2H  norm of eG  is expressed in terms of the 
matrix function ( )P s  in the next theorem. 
 
Theorem 1: If   is stable, then 
 

2

2
( (0) )eG Tr B P B′=                                               (6) 

 
Where ( ), 0P s s h≤ ≤  is continuously 
differentiable and satisfies 
 

0 1

(0) (0)
( ) (0) ( ) , 0

(0) (0) 0

P P
P s A P A P h s s h

P P I

′=

′ ′= + − ≤ ≤

′+ + =

                   (7) 

 
Remark 1:   is related to the Lyapunov functional 
of state delay system (4). Let [ ]( ) , ,0V C hφ φ∈ −  
be defined by 
 

  (8) 

1
0

1 1
0 0

( ) (0) (0) (0) 2 (0) ( ) ( )

( ) ( ) ( )

h

h h

V P P r A h r dr

h r A P r s A h r dsdr

φ φ φ φ φ

φ φ

′ ′+ − +

′ ′+ − + − − +

∫

∫ ∫
 

 
Where ( ) ( )P s P s′ −  if 0s < . Equation (7) is 
derived from 
 

( ) ( ) ( )t
d V x x t x t
dt

′= −                                             (9) 

Where [ ]( ) ( ) , ,0tx r x t r r h+ ∈ −  
 
Remark 2: If there are no time delay terms, the 
result in Theorem 1 becomes a standard 2H  norm 
computation. See, for example, Theorem 3.3.1 in 
[27]: the 2H  norm of a stable non-delay system is 
given by 
 

2

2
( )eG Tr B PB′=                                                  (10) 

Where 
 

0 0 0A P PA I′ + + =  
 
Note that conditions (7) are equivalent to those in 
(10) if 0h = , 1 0A =  and 1 0C = . 
The proof of Theorem 1 will be given using Lemma 
1 and 2. 
Lemma 1: If system eG  is stable, then 
 

2

2

1 ( ( ) ( ))
2e e eG Tr G j G j dω ω ω
π

+∞

−∞

′= −∫                   (11) 

 
Proof: The result is standard (see Chap 3.3 in [27]). 
Lemma 2: If eG  is stable and ( ), 0P s s h≤ ≤  
satisfies (7), then 
 

1 11(0) ( ) ( )
2

P j j dω ω ω
π

+∞
− −

−∞

′= ∆ ∆ −∫                        (12) 

 
Where 
 

0 1( ) j hj j I A A e ωω ω −∆ − −                                  (13) 
 
Proof: See [29]. 
(Proof of Theorem 1) From Lemma 1, 
 

{ }

1 1

1 1

( (0) )

1 ( ) ( )
2

1 ( ) ( )
2

Tr B P B

Tr B j j Bd

Tr B j j B d

ω ω ω
π

ω ω ω
π

+∞
− −

−∞

+∞
− −

−∞

′

⎧ ⎫⎪ ⎪′ ′= ∆ ∆ −⎨ ⎬
⎪ ⎪⎩ ⎭

′ ′= ∆ ∆ −

∫

∫

 

Since ( ) ( )f j d f j dω ω ω ω
+∞ +∞

−∞ −∞

= −∫ ∫  , we have 

 

{ }

{ }

1 1

( (0) )

1 ( ) ( )
2

1 ( ) ( )
2 e e

Tr B P B

Tr B j j B d

Tr G j G j d

ω ω ω
π

ω ω ω
π

+∞
− −

−∞

+∞

−∞

′

′ ′= ∆ − ∆

′ ′= −

∫

∫

 

 
Since ( ) ( )Tr AB Tr BA=  whenever AB  and BA  
are square matrices, we have 
 

{ } 2

2

1( (0) ) ( ) ( )
2 e e eTr B P B Tr G j G j d Gω ω ω
π

+∞

−∞

′ ′ ′= − =∫
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The last equality is from (11). 
If eG  is stable, then 2

2eG  can be computed from 
(0)P   in Theorem 1. How to check the stability of 

eG will be considered later in Theorem 2; first we 
will consider how to compute (0)P  in the next 
lemma. 
 
Notation: For a matrix n nM ×∈  given by 
 

11 12 1

21 22 2

1 2

n

n

n n nn

m m m
m m m

M

m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
M ′  denotes complex conjugate transpose of M  
the column string csM  is defined by 
 

[

] 2

11 12 1 21 22 2

1
1 2

| |

|

n n

n
n n nn

csM m m m m m m

m m m ×′ ∈
 

 
Lemma 3: If eG  is stable, then (0)P  and ( )P h   
satisfying (7) are given by 
 

0 0 1 1

1 2

( ) ( ) ( ) ( )

(0)
( ) 0

I A A I I A T A I
R R

csP csI
csP h

⎡ ⎤′ ′ ′ ′⊗ + ⊗ ⊗ + ⊗
⎢ ⎥
⎣ ⎦

−⎡ ⎤ ⎡ ⎤
⋅ =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

        (14) 

 
Where 
 

2

2
1

1 2: | | | , n
kn

T T T T T R ×⎡ ⎤= ∈⎣ ⎦  
 
Row vector 2,1kT k n≤ ≤  is defined by 
 

2,1kT k n≤ ≤ ( ) ( )
2

1 1: ,1 ,i n j j n iT e i j n− + − += ≤ ≤  

 
Where 

2 1 2,1n
ke R k n×∈ ≤ ≤  is a row vector whose 

k-th element is 1 and all other elements are 0. 
 
And 
 
[ ] [ ] *

1 2 1 0R R V∑  
 
Matrices 1∑  and *V are from the singular value 
decomposition of the following 
 

( ) 1 *0
exp( )

0 0
I J Hh U V

∑⎡ ⎤
− = ⎢ ⎥

⎣ ⎦
                           (15) 

 
Where U and V  are unitary matrices, and 

2 2

1
n nR ×∑ ∈  is a diagonal matrix whose diagonal 

elements are nonzero singular values of 
( )exp( )I J Hh− . Let ijT  denote an n n×  matrix 
with ( , )i j -entry equal to 1 and all other entries 

equal to zero, and let 
2 2n nT R ×∈  be the block matrix 

T , jiT⎡ ⎤⎣ ⎦  (i.e., the ( , )i j -block of  T is jiT ). 

Matrices H  and J are defined by 
 

0 1

1 0

0( ) ( )
,

0( ) ( )
II A I A T

H J
II A T I A

⎡ ⎤′ ′⊗ ⊗ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥′ ′− ⊗ − ⊗ ⎣ ⎦⎣ ⎦

 

 
Proof: See [22]. 
 
Note that  (0)P  can be computed from the matrix 
exponential (15) and a simple linear equation (14). 
Thus if eG  is stable, then we can easily compute 

2H  norm: see (6). 
Now the stability of eG  is considered in Theorem 2, 
where a stability condition for interval delay 

)0,h h⎡∈⎣ is provided. 

 
Theorem 2: Suppose eG  is stable for 0h = . If H  
has imaginary eigenvalues { }1, , kj jω ω and 
their corresponding eigenvectors are given by 
 

2 2

1,1 ,1

1,2 ,2
1

1,2 ,2

, ,

k

k
k

n k n

ν ν
ν ν

ν ν

ν ν

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
then eG  is stable for )0,h h⎡∈⎣ where h  is defined 

by 
 

2

,

1
,

1min ln i l

i k
i l n

h
j

ν
ω ν≤ ≤

+

⎛ ⎞
⎜ ⎟∈
⎜ ⎟
⎝ ⎠

                                       (16)  

 
where 2

, ,0 1i l nν ≤ ≤  is any nonzero element of 
 

lν . Theorem 2 is proved using Lemma 4 and 5. 
Lemma 4 is based on the fact that if eG  is stable for 
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0h =  and eG  does not have any imaginary poles 

for )0,h h⎡∈⎣ , then eG  is stable for )0,h h⎡∈⎣ . 

 
Lemma 4: eG  is stable for )0,h h⎡∈⎣  if  

• eG  is stable for 0h =    
• The following equation does not have any roots for  

)0,h h⎡∈⎣ : 

 
0 1det( ) 0j hj I A A e ωω −− − =                                  (17) 

 
Proof: See [30]. 
Stability of eG  for 0h =  can be easily checked 
from eigenvalues of 0 1A A+ . On the other hand, 

checking whether (17) has any roots for )0,h h⎡∈⎣  

is not easy: (17) should be checked for all 
0 ω≤ < ∞ and 0 h h≤ <  In the next lemma, it is 
shown that a root jω  of (17) (if any) is an 
eigenvalue of H . 
 
Lemma 5: If (17) has a rootω , then it is an 
eigenvalue of H . 
 
Proof: Suppose (17) has a root jω  for h ; then 
there exists ( ) 0nx C∈ ≠ such that 
 

0 1( ) 0j hx j I A A e ωω −′ − − =                                   (18) 
 
Taking the transpose (not complex conjugate), we 
Obtain 
 

0 1( ) 0j hj I A A e xωω −− − =  
 
Let nCα∈ be defined by 
 

1

2 2
j h

n

xe
ω

α
α

α

α

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                (19) 

 

where , ,1i i nα ≤ ≤  is a complex number. Let ν  be 
defined by (u  is the complex conjugate of u ) 
 

u
v

u
⎡ ⎤
⎢ ⎥
⎣ ⎦

                                                                (20) 

Where 

2

1

2 n

n

x
x

u C

x

α
α

α

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                    (21) 

 
The theorem is proved if we show that this ν  ( 0v ≠  
from the construction) satisfies ( ) 0j I Hω ν− = : that 
is, jω  is an eigenvalue of H . From the definition 
of H , we obtain 
 

( )
( )

0 1

1 0

0 1

0 1

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

j I H

j I I A I A T
I A T j I I A

j I I A u I A Tu

j I I A u I A Tu

ω ν

ω
ν

ω

ω

ω

−

⎡ ⎤′ ′− ⊗ − ⊗
= ⎢ ⎥′ ′⊗ + ⊗⎣ ⎦
⎡ ⎤′ ′− ⊗ − ⊗
⎢ ⎥=
⎢ ⎥′ ′+ ⊗ + ⊗⎣ ⎦

        (22) 

 
Partition ( )j I Hω ν−  into 2n  complex vectors and 
let the i-th block of ( )j I Hω ν−  be denoted by 

n
ir C∈ . Then ,1ir i n≤ ≤  is given by 

 
0 1 1 1 2 2( ) ( )i i i i ni nr j I A x A T T T xω α α α α′ ′= − − + + +   

 
Noting the following relation 
 

1 1 2 2

2
1 1 2 2

2

( )

( )

i i ni n

j h

i i ni n

j h

i

T T T x

T T T e

e

ω

ω

α α α

α α α α

α α

−

−

+ + +

= + + +

=

 

 
We obtain 
 

( )
( )

2 2
0 1

2
0 1

0 1

( )

0 , 1

j h j h

i i i

j h
j h

i

j h
i

r j I A e A e

e j I A A e

j I A A e x i n

ω ω

ω
ω

ω

ω α α α α

α ω α

α ω

−

−

−

′ ′= − −

′ ′= − −

′ ′= − − = ≤ ≤

 

 
The last equality is from (18). 
Since , 1i n ir r i n+ = − ≤ ≤  (see (22)), we have 

0, 1 2ir n i n= + ≤ ≤ . Hence , ( ) 0j I Hω ν− = , 
where 0ν ≠  (since 0x ≠ ). 
Proof of Theorem 2: From the proof of Lemma 5, 
if  (17)  has a root iω  for  (1 )ih i k≤ ≤ , then iω is 
an eigenvalue of H . Furthermore, the 
corresponding eigenvector of H  is of the form: 
 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Mohammad Ali Pakzad, Bijan Moaveni

E-ISSN: 2224-2856 5 Issue 1, Volume 8, January 2013



2 2 2 2
1 2 1

2 2
2

i i i i i i i i

i i i i

j h j h j h j h

i n

Tj h j h

n

v x xe x xe x xe x xe

x xe x xe

ω ω ω ω

ω ω

−

− −

⎡
= ⎢
⎣

⎤
⎥
⎦

 

 
Thus ih  can be computed as follows: 
 

2

,

,

1 ln i l
i

i l n

v
h

j vω
+

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

 
Where 2

, , 1i lv l n≤ ≤  is any nonzero element of iv . 
If the minimum value of (1 )ih i k≤ ≤  is ih then 

(17) does not have a root for )0,h h⎡∈⎣ . From 

Lemma 4, this proves the theorem. 
 
Remark 3: Once a filter gain K  is determined, we 
can check the stability of the error system (4) 
(Theorem 2) and compute its 2H  norm (Theorem1). 
 
 
4 Filter Design 
In this section, the synthesis algorithm of an 2H  
filter (3) is proposed, where the algorithm is 
formulated as a constrained nonlinear optimization 
problem. When minimizing 2H  norm of eG  over 
K  using Theorem 1, it should be guaranteed that 

eG  is stable. If the filter gain K  is given, the 
stability of eG  can be checked using Theorem 2, 
which provides a upper stability bound ( )h k  (i.e., 

( , )eG K h is stable as long as h h< ). Thus finding 
an optimal K , which stabilizes eG  and minimizes 

2
( , )eG K h can be formulated as follows: 

 
2

2
min ( , ) ( , )

( )
k eJ K h G K h

subject to h h k<
                                  (23) 

 
(23) is a constrained nonlinear optimization problem 
whose global solution is difficult to find. A 
suboptimal approach is proposed to compute K  
using  penalty methods [26].  
A penalty function is defined by 
 

2

0 ( )
( , )

( ) ( )
if h h K

p k h
h h if h h Kα

⎧ <⎪
⎨

− ≥⎪⎩
 

 

where α  is a constant and is chosen so that 
( , ) ( , )p K h J K h  when ( )h h k . With this 

penalty function, a constrained optimization 
problem (23) can be replaced by the following 
unconstrained optimization problem: 
 

2

2
min ( , ) ( , ) ( , )K P eJ K h G k h p K h+                 (24) 

 
Note that if ( )h h k< (i.e., eG  is stable), then 

( , ) ( , )PJ K h J K h= . Also note that if ( )h h k≥ ,then 
( , )PJ K h  is dominated by the penalty function 

( , )p K h . Thus the penalty function ( , )p K h  
prevents unstable region searching when the 2H  
norm is being minimized. 
An initial value of K can be chosen by minimizing 

( ,0)J K :  the initial value corresponds to the 
Kalman filter gain for a non-delayed system. 
Minimization problem (24) can be solved, for 
example, using an unconstrained nonlinear 
optimization function fminunc in MATLAB 
optimization toolbox. 
 
 
5 Numerical Example 
In this section, the simulations have been performed 
by means of the MATLAB software. 
 
Example 1: Consider the following first-order time 
delay system: 
 

( ) ( ) 2 ( ) 0.5 ( ) ( )
( ) ( ) ( ) 0.5 ( )

x t x t x t h t u t
y t x t x t h t

ω
ν

= − − − + +
= + − +

             (25) 

 
where ( )tω  and ( )v t  are the vectors of the input 
noise and measurement noise, respectively. It is 
assumed that these noises are Gaussian processes 
with an average of zero and that ( )tω  and ( )v t  are 
uncorrelated and they satisfy relation (2). In this 
example, 0.5h = .    
The optimization problem (24) is solved by means 
of the Matlab optimization toolbox, and for this 
purpose, the optimization function “fminunc” in 
Matlab is used. 
By using 0h = , the initial value for filter gain K  is 
obtained. The value of α  in the penalty function has 
been adjusted at 200. The values calculated for 

0.5h =  are as follows: 
2

2
0.1073, 1.2092 , ( , ) 0.0717eK h G K h= = =  

Using the computed filter gain, state estimation 
simulation was done, where a unit step signal was 
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applied to the control input ( )u t at time 1s. The 
simulation result is given in Fig.1 
 

Fig. 1: Simulation result : true state and estimated value 
 
it can be seen that the proposed 2H  filter estimates 
system states well. 
To see how the time delay affects estimation 
performance, 2H  filters were designed for different 
h values. 
As seen in Table 1, computed 2H  norm increases as 
time delay h  increases. 
 
Table 1. Time delay effects on estimation performance.  
  0.1h =   0.3h =   0.5h =   0.8h =

2

2
( , )eG K h   0.0399 0.0543 0.0717 0.1095 

Variance of actual 

estimation error 

 
0.000015 

 
0.00035 

 
0.00065 

 
0.0009 

 
Example 2: In this problem, the 2H  filter is 
designed for the second-order system given in the 
following relation. 
 

[ ] [ ]

2 1 1 0
( ) ( ) ( )

0 1 1 1

0.2 1
( ) ( )

0.2 1

( ) 0 1 ( ) 1 1 ( ) 0.5 ( )

x t x t x t h

t u t

y t x t x t h t

ω

ν

− −⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= + − +

         (26) 

where ( )tω  and ( )v t  are zero-mean, uncorrelated 
white Gaussian processes satisfying (2). The time 
delay is set to be 0.3h = . 
Optimization problem (24) was solved using Matlab 
optimization toolbox. The initial value of the filter 
gain K  is computed using 0h = , and α  in the 

penalty function is set to 100. The computed values 
are as follows: 
 

2

2

0.0772
, 1.6309 , ( , ) 0.0240

0.0276 eK h G K h
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 

 
Using the computed filter gain, state estimation 
simulation was done, where a unit step signal was 
applied to the control input ( )u t at time 1s. The 
simulation results are given in Fig.2 and Fig.3:  it 
can be seen that the proposed 2H  filter estimates 
system states well. 
 

Fig. 2: Simulation result: true state (the first element of 

state x) and estimated value 

 

Fig. 3: Simulation result: true state (the second element of 

state x) and estimated value 
 
To see how the time delay affects estimation 
performance, 2H  filters were designed for different 
h values. 
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As seen in Table 2, computed 2H  norm increases as 
time delay h  increases. Variance of actual 
estimation error, which was computed from a 
simulation, also increases as time delay h  
increases. This verifies a common belief that the 
time delay adversely affects on estimation 
performance. 
 
Table 2. Time delay effects on estimation performance.  
  0.1h =   0.3h =   0.5h =   0.7h =

2

2
( , )eG K h   0.0180 0.0243 0.0321 0.0424 

Variance of actual 

estimation error 

 
0.00088 

 
0.00011 

 
0.00013 

 
0.00015 

 
 
Example 3: Consider the following third-order 
system with delayed output and state: 
 

(27) 

[ ] [ ]

1 13.5 1 5.9 7.1 70.3
( ) 3 1 2 ( ) 2 1 5 ( )

2 1 4 2 0 6

0.2 1
0.2 ( ) 1 ( )
0.2 1

( ) 0 0 1 ( ) 1 1 1 ( ) 0.5 ( )

x t x t x t h

t u t

y t x t x t h t

ω

ν

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − − + − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= + − +

  
where ( )tω  and ( )v t  are the vectors of the input 
noise and measurement noise, respectively. In this 
example 0.06h = .    
The optimization problem (24) is solved by means 
of the Matlab optimization toolbox, and for this 
purpose, the optimization function “fminsearch” in 
Matlab is used. 
By using 0h = , the initial value for filter gain K  is 
obtained. The value of α  in the penalty function has 
been adjusted at 50. The values calculated for 

0.06h =  are as follows: 
 

2

2

0.5338
0.5596 , 0.1624 , ( , ) 1.3949
0.1493

eK h G K h
⎡ ⎤
⎢ ⎥= = =⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
The simulation results are given in Fig.4, Fig.5 and 
Fig.6:  it can be seen that the proposed 2H  filter 
estimates system states well. 

Fig. 4: Simulation result: true state (the first element of 

state x) and estimated value 

 

Fig. 5: Simulation result: true state (the second element of 

state x) and estimated value 

Fig. 6: Simulation result: true state (the third element of 

state x) and estimated value 
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As seen in Table 3, computed 2H  norm increases as 
time delay h  increases. 
 
Table 3. Time delay effects on estimation performance.  
  0.01h =   0.03h =   0.06h =   0.1h =

2

2
( , )eG K h   0.9765 1.0962 1.3949 2.0859 

Variance of 

actual 

estimation error 

 
0.000055 

 
0.0001 

 
0.0005 

 
0.0007 

 
As is observed, the increase of time delay has an 
opposite effect on the estimation performance, and 
with the increase of time delay, the estimation error 
variance also increases. 
 
 
6 Conclusion 
In this article, a method was proposed for the 
designing of 2H  observers for linear systems with 
time delay in the output and in state variables. By 
using the finite characterization of a Lyapunov 
functional equation, the existence of sufficient 
conditions for achieving the right solution and 
guaranteeing the proper convergence rate of the 
estimation error was evaluated. This observer 
provided satisfactory results in practical 
applications. Finally, by designing observers for 
three linear systems with time delays, the 
effectiveness of the proposed approach was 
demonstrated. 
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